Design, Implementation, and Evaluation of the
Reslient Smalltalk Embedded Platform

Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund

OOVM A/S
Ellevej 2
DK-8310 Tranbjerg J

Toke Eskildsen, Klaus Marius Hansen, Mads Torgersen

Computer Science Department, University of Aarhus
IT-Parken, Aabogade 34
DK-8200 Aarhus N

Abstract

Most microprocessors today are used in embedded systentbapercentage of micro-
processors used for embedded systems is increasing. Athe sme development of
embedded systems is very resource-consuming among otééeo doe lack of support for
incremental development and for support for dynamic sergiand upgrading of deployed
systems. This paper introduces the design and implementatitheResilient Systerfor
embedded systems development which has as a design gogipgorsexactly this. Pro-
grams are written in a dialect of Smalltalk and executed oorapact, efficient virtual
machine running on embedded systems. Programmers mayot@damanning virtual ma-
chines and service, monitor, or change the running systeorshermore, we present an
evaluation of the Resilient platform in relation to the desgoals through a case study of
two development projects which successfully used theqotaif

Key words: Virtual Machines, Smalltalk, Evaluation, Case Study

Email addressegakob@oovm.com (Jakob R. Andersenjars@oovm.com (Lars
Bak), steffen@oovm.com (Steffen Grarup)kasper@oovm.com (Kasper V. Lund),
darkwing@daimi.au.dk (Toke Eskildsen)klaus.m.hansen@daimi.au.dk
(Klaus Marius Hansenpadst@daimi.au.dk (Mads Torgersen).

ESUG Conference 2004 Research Track (www.esug.org)

1 Introduction

More than 90% of microprocessors produced today are usadledded devices,
ranging from dishwashers, automobiles, to mobile phonkes.embedded industry
each year spends more than 20 billion dollars developingraidtaining software

in these products [1]. Development of software for embedtbices has tradition-
ally been very cumbersome: source code is compiled anddinkea development
host, whereupon the resulting binary image is transfersezh@hole onto the actual
device, typically into flashable memory. If the source caglehianged, the entire
process must be restarted. Making a change effective canetimily take several
minutes, severely limiting development productivity. §e problematic in an in-

dustry where software development and testing already deagpmore than 50%
of R&D budgets [1].

Another problem facing the embedded industry is the lackeofiseability. Soft-
ware content in embedded devices doubles every two yeatdngnaxhaustive
testing virtually impossible [2]. Deployed products witkvitably contain software
errors, leading to expensive recalls. As an example, teedehmunications indus-
try currently spends as much as 8 billion dollars each yeardifaulty handsets
[3]. Debugging and profiling is sometimes supported duriexgtbpment, typically
through instrumentation of code, making a debuggable sytaeger and slower
than a non-instrumented version. For this reason such sugpemoved in de-
ployed devices, making later error diagnostics exceedididficult.

Similarly, software content in embedded devices ofteniregwpdates in the form
of upgrades. In a static software model, this is commonlpagdished by down-
loading and re-flashing the entire binary image. In a moreadyin software devel-
opment model where component code can originate from deeegtions, such
updates become extremely hard to administrate.

Finally, source code is typically highly platform-specifand written in unsafe,
low-level programming languages such as C or assembler.rAsudt, reusability
is limited and software development requires a large degjire&pertise regarding
the particular target platform and its low-level details.

The Javad" 2 Micro Edition (J2ME) has been proposed as a solution to sofime
these issues [4]. It comes with a debugging interface, bstishagain commonly
removed due to space concerns. Furthermore, the dynameclecading model in
J2ME is severely limited compared to its Java 2 Standardded{f2SE) counter-
part. Finally, the runtime environment for J2ME requiresrenmemory than what
is available on most low-end embedded systems.

Future pervasive computing scenarios in which a large nurmbembedded de-
vices are communicating will require a much more flexibletwafe model, al-
lowing for dynamic and changing functionality over time.[H} the face of this,

the Resilient Systerhas been designed and implemented. The design goal for the
Resilient System is to have an always running serviceabliégpim for embedded
devices with the following characteristics:

I ncrementality and serviceability: The platform should support incremental pro-
gramming enabling rapid development and full product seaility.

Accessibility and reuse: Furthermore, it should be accessible to non-expert pro-
grammers, by being based on a safe, high-level programmanggbage with easy
support for reuse of platform-independent code.

L ow resource consumption: Finally, the platform should be compact enough to
be useful on low-end embedded devices, including systerthgn(SOC) solu-
tions, yet efficient enough for most real-time applications

In this paper we present the design of the Resilient platfasndriven by these
goals. Furthermore we evaluate the extent to which this wesessful, based on
experiences from two development projects using the Resifilatform, both con-
ducted in a cooperation between academia and industry.

1.1 Contributions

The expected contributions of this paper are:

¢ to introduce the innovative design and implementation efResilient System
which provides incremental development, dynamic upgigdind serviceability
in embedded systems development and

e an evaluation of the Resilient System in terms of its desigalgand of the
relevance of the design goals to the development of two eddzkslystems.

1.2 Paper Structure

The rest of this paper is structured as follows: Section 2gnts the design and
implementation of the Resilient System in terms of its asged programming lan-
guage (Section 2.2), embedded platform (Section 2.4), amgr@mming environ-
ment (Section 2.5). Next, Section 3 presents our evaluafitiee Resilient System
through the conduction of two projects; the “Digital Speak@roject (Section 3.1)
and the “LIWAS” project (Section 3.2). Section 3.3 discisite experiences of us-
ing the Resilient Systems and finally Section 4 concludes.

2 Design and Implementation of the Resilient System

2.1 Overview

The complete Resilient System comprises a developmentogmaent running on
a PC and a running Resilient Virtual Machine deployed on ahezided system or
run locally. Figure 1 shows a deployment view of the Resil&ystem using a Uni-
fied Modeling Language (UML; [6]) deployment diagram. ThesRent Program

PC

:Eclipse

Elg $:Resilient Plugin =={=

TCP/IP

:Embedded System
$ - L — -% :Resilient Virtual Machine <
:Resilient Virtual Machine

Fig. 1. Deployment Overview of the Resilient System

A

= —————

Jpp i p——

[}

Environment, accessed using Eclipse with Resilient psigitommunicates with
the running Resilient Virtual Machine using any availabéwork connection.

The virtual machine connects to the underlying operatirgiesy (if available) in
order to establish network connections. If the virtual niaehs running without
an underlying operating system, a TCP/IP networking stanking on the virtual
machine is used.

In order to create snapshots for booting and deploymentpithgramming envi-
ronment uses a local virtual machine. Due to the platfornepehdence of the
Resilient code, the local virtual machine is independeriheftarget platform for
the snapshots.

Having created an initial snapshot, the developer trassfé¢o the target hardware
and starts the virtual machine. Incremental developmemeiitormed by connect-
ing to the virtual machine from Eclipse, which controls dgtpung as well as up-
dating of classes and evaluation of code on the target Vimtaahine.

Changes to the running system are not persistent, so theocreend transfer of

a new snapshot is necessary if the changes are to survivetiedpof the virtual
machine.

The following sections describe the design of the Resilgygtem in detail.

2.2 The Resilient Programming Language

The Resilient programming language is a dialect of Smé&l[igldesigned for sim-
plicity, compactness, and performance. Smalltalk was emdsr several reasons:
Smalltalk is a simple, dynamically typed, object-orienpgdgramming language;
everything is an object and behavior is described as messagks between ob-
jects; Smalltalk has proven ideal for supporting increrabptogram modification
in that a programmer can freely modify a program without teechfor recom-
piling and restarting the application; and most Smalltai&tems use a snapshot
model allowing the same program execution to survive forgea

The Resilient programming language differs from Smalltalthe following ways:

Full syntax for classes is provided.

Last-In-First-Out (LIFO) blocks are enforced.

An atomic test-and-store statement for synchronizatiemtisduced.
A namespace hierarchy for modularization of libraries teaduced.

Traditionally, Smalltalk systems have forced programntersise the integrated
programming environment for all program manipulations.tivbels are the unit

of manipulation and for that reason a full syntax for clasdess not exist. We

introduce a full syntax for classes to allow programmersge standard tools for
program manipulation and source control management. &ss slyntax has been
inspired by the syntax for Self [8]. The example below shdwesgource code for

Mutex , a class that implements a simplified lock structure.

Mutex = Object (
| owner |
"acquire the lock prior to evaluating the
block and then release the lock"
do: [action] = (
['repeat the atomic test and store until it succeeds"
owner ? nil := Scheduler current
] whileFalse: [Scheduler yield].
action value.
owner := nil

Most object-oriented systems provide high-level synclaation mechanisms as
part of the programming language [9] or as prebuilt datacttines [10]. Instead, we
have introduced a very low-level and simple synchronizati@chanism; an atomic
test-and-store statement. Advantages of this approaahiammal virtual machine
support and a very flexible building block for implementing/ige range of high-
level synchronization mechanisms. The abbigex example uses the atomic test
and store statement to busy wait for exclusive access. Ilexhmple, the current
thread is computed, and then we atomically compare and dm@itmmnal store
(owner ? nil := Scheduler current). The instance variable owner is
compared to nil, and if they match the current thread is assidgo it. The boolean
result of the statement indicates whether the atomic teststore succeeded.

In order to support independently developed program parsjution for prevent-

ing name collision has been introduced. Resilient provedeisple form of names-
paces. Any class can act as a namespace. For instance ghdetaribing elements
in a list resides inside the List class. Classes in two défienamespaces will there-
fore not be subject to name collisions.

2.3 Typed LIFO Blocks

Creating blocks in Smalltalk has always been a potentiatcgoaf performance
problems. Blocks might survive the lifespan of the creaawgvation forcing the
underlying implementation to heap allocate not only thekéthemselves but of-
ten also the method invocations in their scope. This is esiperand also stresses
the memory management system. In Resilient, we have restidocks to be last-
in-first-out (LIFO), which means a block cannot survive thieating activation.
This allows Resilient to stack allocate blocks, therebgnéiating most costs asso-
ciated with block creation.

To guarantee this behavior, we have introduced a type @eidarfor blocks: square
brackets around a formal parameter specifies that it is &bkt example is the
parameteraction in the aboveMutex class. This separation between objects
and blocks makes it straightforward for the byte-code cdenpo statically enforce
LIFO behavior, by preventing blocks from being stored ineal$ or used as return
values.

The graph in figure 2 on the following page shows the exectutioe of a sim-
ple, recursive, block-intensive micro-benchmark on a neindd Smalltalk virtual
machines. The benchmark constructs a linked list and usekdhnd recursion to
compute its length:

Element

= Object (
| next |

length = (
| n |
n = 0.
self do: [:e| n:=n+ 1. e ifLast: ['n].].

)

do: [block] = (
block value: self.
next do: block.

)

ifLast: [block] = (
next isNil ifTrue: [block value].
)
)

It follows from the implementation that the micro-benchinaliocates at least one
block-context per level of recursion, and that the nondleeturn in the[“n]
block must unwind at least as many contexts as the lengthedirtked list.

The graph shows that the execution time is linearly dependerthe recursion
depth for all virtual machines. It also shows that enforcéBQ. blocks makes
our virtual machine almost 78% faster than the virtual maesifor Squeak and
Smalltalk/X, when it comes to interpreting block-interessode. Better yet, our in-
terpreter outperforms the just-in-time compiled versidthe Smalltalk/X system
by more than 16%.

1000

—OOVM

— Squeak
Smalltalk/X (interpreted) | |
Smalltalk/X (compiled)

700 /
600

500

900

800

Milliseconds

400

300

200

100

1 Recursion depth 50

Fig. 2. Execution time for block-intensive micro-benchknar

Of course this approach has some language implicationsh®megative side,
the purity of the standard Smalltalk “everything is an objeredo is somewhat
hampered with two static types rather than one. In prachieggenerality of stan-
dard Smalltalk blocks is rarely used, but there are a few (m@kof two) com-
mon situations where it would be natural to store blocksdi@sibjects in order
to dynamically parameterize these objects with behavidne example is sorted
collections, which should be parameterizable with the canispn operator to use
for the sorting. The other example is Graphical User IntafgGUI) widgets like
buttons, which should be able to store a callback functionwieen the button is
pressed. In neither case can Resilient LIFO blocks be useboae must instead
apply the “function object” technique from, e.g., Java Canapors, where a full
object is supplied, implementing the desired behavioumfarison or callback) as
a method.

From a language point of view it should be noted that genéoakis themselves are
not without problems, especially in light of the non-localurn mechanism. Non-
local return makes the block return to its creating contather than its calling

context, but that is meaningful only when the creating cxiritestill on the stack,

and otherwise gives rise to a runtime error (after possiblirig peeled apart the
whole stack in search of the missing activation). This uirdbge situation is nat-

urally prevented in Resilient, so the added static typinglo€ks does in fact have
an error-preventing as well as an efficiency-related effect

LIFO behaviour also means that blocks can never be traesfé@tween concur-
rent threads, avoiding the similar issue of what to do in #ee®f non-local returns
to a different stack. All in all we think that this languagetréction has important
semantic advantages along with the efficiency gain, andhledoss of expressive-
ness is a minor problem in practice.

2.4 The Embedded Platform

The embedded platform is based on a small object-orientégavimachine. All
software components are compiled to safe, compact byte@ukexecuted on top
of the virtual machine. The compactness makes it possilfiigthe virtual machine,
core libraries, device drivers, TCP/IP networking stack] aser applications in less
than 128KB of memory.

The embedded platform can be configured to run directly odvare without
the need for an operating system. This accommodates for tis¢ niesource con-
strained devices, onto which it is impossible or impradtiodit a full operating
system. However, itis also possible to run the embeddetbpiabn top of existing

embedded operating systems, such as Embedded LiomSymbian OS. This
option is useful in projects that depend on existing appbos or device drivers.

Software components running on top of the virtual machirmeraostly platform

independent. The virtual machine bytecodes themselveimdependent of the
hardware on which they run, so that it is possible to buildliappons that run

on any device equipped with the embedded platform. Howéwewirtual machine
allows device drivers to be implemented on top of it, andefere some software
components may depend on external input/output devicekmblaonly on some
hardware platforms. The example below briefly illustrates/fa sample device
driver for the Intel StrongARM general-purpose /O (GPIQ)dnle might be im-

plemented:

GPIO = Object (
| o |
initialize = (
io := Memory at: 16r90040000 size: 16r20.
)

setOutput: pins = (
io longAt: 16r08 put: pins.
)

clearOutput: pins = (

io longAt: 16r0C put: pins.
)
)

The example also illustrates the most common way of progidiaevice access,
viz., by mapping device address spaces as part of system imespace. Access
to memory-mapped 1/O is provided through external memooxpobjects (here
throughMemory objects). The virtual machine makes sure that are drivenaan
allocate a proxy that refers to the object heap, therebyilplgsorrupting the heap.
Interrupt requests from devices are reified@mal objectdy the Resilient system
software; device drivers consequently handles intereguiests at the level of these
objects.

Software components running on top of the virtual machimefally serviceable
through a reflective interface in the embedded platform.rEffiective interface al-
lows the programming environment running on the develsgegisonal computer
to inspect the state of the running system and possibly eéh&n§ection 2.5 gives

L http://www.embedded-linux.org
2 http://www.symbian.com

more details on the connection between the programminganwvient and the em-
bedded platform.

Most of the reflective interface is implemented in the ResiliProgramming Lan-
guage itself as a component running on top of the virtual nm&cfT he virtual ma-
chine provides hooks for manipulating breakpoints andaitiseand for inspecting
and changing classes, methods, and objects. The commuanigabtocol for re-
flection is handled by a service implemented entirely in thsilkent Programming
Language. The reflective interface is always availablen evedevices deployed at
customer sites. The result is that developers can debufjepend update running
code on any device that runs the embedded platform.

The embedded platform guarantees predictable responsg. tirsupports schedul-
ing of interrupt handlers and time critical tasks. The nasruptive, real-time gar-
bage collector handles all resource management in the btaokd. Furthermore,
the virtual machine prevents user code from performing ¢ials operations, and
as such it provides a secure, device-independent platformehl-time software
execution and delivery.

2.5 The Programming Environment

The Resilient programming environment is written as a piugp-the Eclipse exten-
sible IDE? . The Eclipse framework provides well-known methods andrabsons
for managing projects and browsing and editing source cbae Resilient plugin
provides the Resilient-specific components, such as saade compiler, debug-
ging, and the reflective connection to a running embeddetfopia. Because the
IDE is based on the industry-standard Eclipse frameworkeld@ers are able to
transfer existing knowledge and practices of software ldgveent into the realm
of embedded development.

An important part of the Resilient development model is thidity to connect the

IDE to a running embedded platform. When connected, the Edble to inspect
and make changes to the object model on the running platfoine connection is
made using the network stacks present on the embeddedrpiagach as stan-
dard TCP/IP. The reflective interface on the embedded pratflows the IDE

to inspect, pause and terminate running threads, inspdataxlify objects in the
object heap, and update code on the running platform.

The reflective interface is key to the Resilient way of depéig software. Since
developers can evaluate chunks of code on the target derideypload changes
while the system is running, it is possible to immediately $e effects of changes

3 http://www.eclipse.org

10

in source code. Debugging is also easier, since it is clasmipled with the source
code development.

[~] Resilient - List - Eclipse Platform = FR

File Edit Navigate Search Project Run Window Help
ItfF BE &% | Jeea

2 51 Explorer x || @ust x = outline 5

"Copyright (C) 2004, 00OVM A/S. All rights reserved."”

EE_ @ Block + size
[E @ Boolean List = UpdatableOrderedCollection (+ first
135 [c] ByteArray | size First | I~ 'f: tesrtmrg
@ Character @ isList
@ CharacterAray "Category: testing" ~ s accessing
@ cCollection Tandse. Sl hmer) @ size
® compactSymbol @ first
@ pate “Categary: attessing! o last
> @ Debug E::t ; E '\E::t)value) VT: adding
[c] Dictionary last = (~first previous value)
~ @ Driver @ addFirst: element
(c] AbstractDisplay "Category: adding" @ addLast: element
b @ csrR ‘*‘: (= T2 removing
QD‘SD“W ;i;st z E::t“‘liﬂk: (Element for: element). » Temovet elentemiialivens
b @ Firewire b] @ removeFirst
@ Info . @ removelast
© Noneta e =5 g
@ serialLine self previous. " ® next
@ False 1‘."
' g :{;j::ble(ul\ecnun 2 T?Sks Elions) 2 i g 2= =
@ Inspector ¥ |! | Description Resource |In Folder | Location
c] Integer
@ Interval
c] Largelnteger
b @ List
[c] Memaory

Tasks | Consocle Problems

Fig. 3. Resilient IDE with a sample project open

Classes in Resilient are organized in namespaces, whiclenagsted, providing a
means for grouping of related classes. The Resilient ID&yshn Figure 3, offers
advanced features for navigating and searching the soad=e c

3 Evaluation

This section relates the experience of two research psojebbth including aca-
demic as well as industrial participation — in which the Rest platform was used.
One project was aimed specifically at evaluating the platfovhereas the other
uses Resilient as a vehicle for industrial prototype dgualent. We first introduce
the projects and then discuss experiences of using thed&testlystem.

11

3.1 The “Digital Speakers” Project

The purpose of this project was to evaluate the Resilientqula in an industrial
setting, targeting as a test case the next generation ldspigekers of Bang and
Olufsen (B&O)*, which are to be connected using the IEEE1392 Firewire stan-
dard.

The virtual machine was ported to a development board witmabrer of Firewire-
related hardware components. A prototype “speaker” wasggsby connecting the
board to a Firewire source (in this case a laptop) and a dlaii@io destination (in
this case a stereo). In a production speaker, the Firewireeeavould be a B&O
stereo and the digital audio destination would be a digitgbleier and a number
of speaker units, boxed up with the board as an active speaker

A programmer with no previous experience in embedded softwes employed
to develop a full test application ranging from low-levehffbrm-specific Firewire
driver code to a high-level platform-independent webseceenponent.

3.2 The LIWAS Project

The LIWAS project is a three year research and developmemégraiming at
producing a frameworkEx Hog for hybrid communication in sensor networks
[11]. The initial use scenario is a network of communicasegsors for measuring
road condition, i.e., whether the road is dry, icy, snowyradny. This scenario has
applications in traffic safety as well as for resource consion in connection to
road maintenance.

The sensors will be deployed in cars and on stationary rap silong roads. This
will allow for ad hoc networking among cars [12] in combimatiwith centralized

communication through either Internet-connected roaaissig mobile gateways in
the form of mobile phones in cars. The communication with, eallow cars to be
warned by passing cars if the road conditions are problematiher ahead.

The current status is that the first communicating mobilsgesystem with a very
simple dissemination protocol is built and tested. Figurehdws a deployment
view of Ex Hoc. The major part of the software on tdebile Unit, viz. theCom-
munication Systens written using the Resilient System. It currently runs on a
CerfCube board with an XScale processor.

TheSensor Systeim mainly low-level microcontroller code written in C. Tlsen-

4 http://www.bang-olufsen.com
5 http://www.intrinsyc.com

12

|IEEE802.11

:Mobile Unit

:Communication System :Backend

) InterCar-
SensorController .
Communicator.

TCP/IP

IEEE802.11

:Stationary Unit

Fig. 4. Deployment View of Ex Hoc

sor Systemnterfaces to the various sensors needed for reliably i§yass road
conditions. TheSensor Systentelivers measurements 36 times per second (which
is equivalent to each meter at 130 kph), each of which neetie tdassified by
theDomain Object Model (DOM)The ad hoc communication puts real-time con-
straints on the system as well since among others clasgifisateed to be commu-
nicated among cars passing each other at high speedtahienary Unitcontains
software analogous to that of tMobile Unit

The implementation of the communication system of the ssnsalone using the
Resilient System by two programmers with little experieimoembedded software.
The development is done in collaboration with the privatepany LIWAS A/S°
which is also responsible for the necessary hardware aattn.

3.3 Experiences

This section presents and discusses experiences from igadiCspeakers” and
LIWAS projects in relation to their use of the Resilient Symtas a basis for imple-
mentation.

6 http://www.liwas.com

13

3.3.1 Batch and Incremental Development

The “speaker” application was the first major applicatiorbéodeveloped on the
Resilient platform, and the project took place while thetfplan was still being
developed and thus suffering from a number of bugs and flaws.dDthese turned
out to be a major show stopper: a problem with the serial lisamhthat for some
time the platform could not survive receiving incrementadgram modifications.
Thus we were temporarily forced into the batch-orientetestyore conventionally
used for device programming, and inadvertently ended upgteghle to compare it
with the incremental development model of the Resilientesys

The incremental mode of work proved a huge benefit to prodtctiThe ability
to query and modify the state of the running device (by sendiode to it — at
the time the debugger was not yet functional), and to modliértinning code for
programming or test purposes gave rise to a very tight dpuedmt loop. Compared
to desktop development environments the immediacy andratien of the code-
test-run cycle on the Resilient platform was found to be niot@e with dynamic
systems such as conventional Smalltalk than the sopmedvatrsturnaround of
static systems such as Java and C++. The experiences intli#esSproject concur
with this.

3.3.2 Dynamic Update in Development

An example of the power of serviceability comes from the LISVproject: part of
the prototyping work has been to equip a trailer with amorgs light reflection,
road temperature, dewpoint, and air temperature sensoiswhs done to collect
as much data as possible on as varied road conditions abledssorder to be able
to create a suitable classification algorithm. While usimg trailer with measure-
ment collection and classification controlled by softwanéten in the Resilient
System, it was possible to connect to the running Resiligatesn with a PC run-
ning the Resilient programming environment. This was vesgful among others
in deploying the system, since it was possible to monitossirstem, see what was
wrong if anything, and possibly fix the problem online.

One problem encountered during development of the LIWASiegpn was the
inability to update the running code for a thread handlirrggseommunication. By
refactoring the code to a tight loop containing a methodadation, we sidestepped
this limitation. This experience lead to the standard jpeacif factoring all looping
threads.

A probable future use of the incrementality and servicégbil the LIWAS project
will be the dynamic update of the classification part of dgptbsystems. Currently,
we are testing two different strategies of classificatiome ®wased on a physical
model and one based on a statistical classification. It magiply turn out that
the best strategy for classification will change after th&/AS system has been

14

deployed in a number of test installations and that the tyfpshange is one that
requires major code changes which cannot be parametrizyisingle algorithm.
The Resilient System contains the main functionality fos,thut probably defining
a component model (which enables developers to make ddp&yeersionable
collections of classes and objects) will be necessary oottqs.

3.3.3 The Resilient Programming Language

Within the resources of the projects we did not have the dppday to directly
compare programming in Smalltalk with solving an equivatesk in a traditional
embedded programming language like C or C++. We have howenitten both
low level (e.g. the FireWire driver in the Digital Speakersjpct) and high level
(e.g. the webserver in the Digital Speakers project) code.

At the low level, Smalltalk lacks the ability of C-like langges to directly map
declared datastructures onto the very specific bit layoualatd in memory which
is often characteristic of low level programming. The aldion mechanisms of
Smalltalk are strong enough, however, that it is straigitéod to represent the
individual data components symbolically by means of acuesgthods.

In the “speakers” application, the construction and dewpdif FireWire packages
was as simple and elegant as any C version, the bit manipalaitalized to a few
package-specific methods. For parts of the FireWire codalidvéendeed have C
source available for comparison. In conclusion, writiniyeir software and related
low level programming presents no special challenges inRislient Program-
ming Language.

At the high level, the use of object-oriented abstractiens well documented ad-
vantage, which was also heavily leveraged in the projectindilar effect could
probably have been achieved with the more traditional C+eweéver, apart from
being far from platform independent, C++ as a compiled laggunherently lacks
the possibility of incremental update.

The combination of platform independence and object-teabstraction meant
that the whole web server component, first developed on tdprofx, could be
migrated to the evaluation board with only one minor sougecadjustment be-
fore the code was running again. Thus, the on-the-boarda@went philosophy
is balanced by the possibilty of writing extensive partsmiaplication off-board
if necessary. Moreover, this suggests the possibility éoise of large amounts of
application code across different platforms, somethingtvis rarely seen in the
embedded world.

In the LIWAS project, a “proof-of-concept” prototype wasstideveloped on a Re-
silient System running without operating system. Using Baik, it was possible
to implement a special-purpose serial driver which hookéalthe running Ex Hoc

15

system with miminal overhead. The system was later porté&titbedded Linux for

further prototyping since a large number of drivers had tased including Blue-
tooth, USB, and IEEE802.11 drivers. Except for the drivet,ihere was little code
that had to be removed or replaced. Currently, we are priyndeiveloping directly

on the CerfCube, but also developing on a version of the iRasiBystem running
on Microsoft Windows XP without any code changes being neargsbetween the
setups. The end goal is that the system (i.e., drivers) wifiuly implemented on

a version of the Resilient System running without an opegasiystem.

3.3.4 Interpretation and Performance

With a purely interpreted architecture, certain perforoeacharacteristics are to be
expected. Bytecode representations of code are geneaaipact, whereas com-
piled code is several times more memory consuming. Thisisg¢hson for having
Just-In-Time (JIT) compilers in many systems in order to pienonly the most
used code. That code will be doubly represented howevemamd importantly in
a small system, the JIT compiler itself takes up consideraphce. But compiled
code undoubtedly does run a lot faster.

The running “speakers” application, including the VM ifselebserver, firewire
driver, TCP stack, etc., fitted comfortably within the 128KANRR available on the
development board. There were no real-time constraintearfunctionality, and
therefore little opportunity to evaluate efficiency. Enggins at B&O estimated that
the Resilient VM might have a hard time keeping up with e.gl-teme filtering
of audio streams, at least on affordable hardware. For thiggse, interfacing to
compiled or assembler code would be crucial for the perfoceéantensive parts
of the code.

The LIWAS application on the other hand is inherently a tgak application in
which the system has to handle a set of measurements 36 tenesepond and
make a classification based on this for each set of measuten@ur current im-
plementation clearly supports this also with the statidtitassification. And even
though the CerfCube board has a large amount of RAM avaijlaily little is
used, and the application would be able to be ported to a @&iib 256K RAM.

4 Conclusion

4.1 Incrementality and serviceability

Incremental development with a smooth and tight integnatibcoding and run-
ning has always been a hallmark of Smalltalk and related mym@rogramming

16

languages. A major contribution of the Resilient developtmeodel is to make this
manageable on an embedded system, by separating out thativefjgarts of the
running program onto a separate IDE on a different platform.

Experience from both development projects shows that thaixik programming
feel does indeed carry over to the embedded world, whereahisven greater
relative advantage, because the traditional batch-stigenative here is so much
more costly than in a desktop environment.

Where the update of running code in a desktop Smalltalk enmient is a possi-
bility, in Resilient it is almost inevitable. This brings tocus some of the standard
problems in this area, most notably the fact that code has &tirbictured in antici-
pation of later changes.

4.2 Accessibility and reuse

Traditional embedded programming tends to require a greataf platform spe-

cific expertise. Not only do programs have to be written intfplan-dependent

dialects of assembler, C or C++, but the tools used for tgstimd debugging are
highly platform-specific and often even require speciatinare. With the Resilient
system, the execution semantics as well as the developowstre independent of
the execution platform, as long as a virtual machine has pegad to it. Of course,

drivers etc. must be implemented specially for each debgtthe object-oriented
abstraction mechanisms of Smalltalk help encapsulatidgsoiating these parts.
Thus, code reuse across platforms becomes a real pogsibilit

The projects have confirmed this situation. Programmetsnatembedded experi-
ence or device-specific knowledge have found it easy to dpagdplications on the
system, and cross-platform reuse has also been employeéssfglly. Compared
to standard Smalltalk, the LIFO restrictions on blocks hpr@/en a nuisance at
some points, but generally the language restrictions oRtlient Programming
Language have not been too inhibitive.

4.3 Compactness and efficiency

Being something as unusual as a fully interpreted bytet@ded embedded plat-
form, the Resilient system emphasises size constraintsspeed considerations.
The bytecode format, memory layout, and virtual machingfiare all optimized
for compactness. That said, of course a lot of devotion has guo running code
as fast as possible. The block limitations are an examplieatf t

From especially the “speakers” project we can concludeglyabd deal of software

17

fits onto a rather small device, although very low-end des/igél be out of reach
for the Resilient model. As for speed, we have no measureanbnt can only
conclude that in both projects it was fast enough for our psegs.

Acknowledgements

The academic part of this work has been supported by the aadtpart of the
ISIS Katrinebjerg competency cenfreWe thank the industrial participants in the
projects which evaluated the Resilient System.

References

[1] Wind River Systems, Inc., Investor Relations PresémaiSeptember 2003).

[2] Wind River Systems, Inc., Changing Software Developtmen the Electronics
Industry, Prudential Securities Technology Conferenceder 2002).

[3] K. Belson, Beware of the Worm in Your Handset, The New Y@ites Technology
Section (November 28, 2003).

[4] R. Riggs, A. Taivalsaari, M. VandenBrink, Programmingirgless Devices with
the JavdM 2 Platform Micro Edition, The Java Series, Addison-WesRgading,
Massachusetts, USA, 2001.

[5] ISTAG, Scenarios for Ambient Intelligence in 2010, Teodp., European Commision
- Community Research, ISTAG: European Commission’s In&irom Society
Technologies Advisory Group (February 2003).

[6] OMG, Unified Modeling Language specification 1.5, TeclepRformal/2003-03-01,
Object Management Group (2003).

[7]1 A. Goldberg, D. Robson, Smalltalk-80: The Language atsd Implementation,
Addison-Wesley, Reading, Massachusetts, USA, 1984.

[8] D. Ungar, R. B. Smith, Self: The power of simplicity, inr¢&. of the OOPSLA-87:
Conference on Object-Oriented Programming Systems, Laageguand Applications,
Orlando, FL, 1987, pp. 227-242.

[9] J. Gosling, B. Joy, G. Steele, The Java Language Spegaificadddison Wesley, 1997.

[10] B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, Kyghblard, Abstraction
mechanisms in the beta programming language, in: Proagedihthe 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming daages, ACM
Press, 1983, pp. 285-298.

" http://www.isis.alexandra.dk

18

[11] K. Hansen, T. Eskildsen, L. Kristensen, K.-D. Nielsd®, Thorup, J. Fridthjof,
U. Merrild, J. Eskildsen, The Ex Hoc Infrastructure - EnhHagcTraffic Safety
through Life WArning Systems, in: In Proceedings of Trafigd®2004 (11th Danish
Conference on Traffic Research), Aalborg, Denmark, 2004.

[12] E. Royer, C.-K. Toh, A review of current routing protdgdor ad hoc mobile wireless
networks, IEEE Personal Communication 6 (2) (1999) 46-55.

19

