
Design, Implementation, and Evaluation of the
Resilient Smalltalk Embedded Platform

Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund

OOVM A/S
Ellevej 2

DK-8310 Tranbjerg J

Toke Eskildsen, Klaus Marius Hansen, Mads Torgersen

Computer Science Department, University of Aarhus
IT-Parken, Aabogade 34

DK-8200 Aarhus N

Abstract

Most microprocessors today are used in embedded systems andthe percentage of micro-
processors used for embedded systems is increasing. At the same time development of
embedded systems is very resource-consuming among other due to the lack of support for
incremental development and for support for dynamic servicing and upgrading of deployed
systems. This paper introduces the design and implementation of theResilient Systemfor
embedded systems development which has as a design goal to support exactly this. Pro-
grams are written in a dialect of Smalltalk and executed on a compact, efficient virtual
machine running on embedded systems. Programmers may connect to running virtual ma-
chines and service, monitor, or change the running systems.Furthermore, we present an
evaluation of the Resilient platform in relation to the design goals through a case study of
two development projects which successfully used the platform.

Key words: Virtual Machines, Smalltalk, Evaluation, Case Study

Email addresses:jakob@oovm.com (Jakob R. Andersen),lars@oovm.com (Lars
Bak),steffen@oovm.com (Steffen Grarup),kasper@oovm.com (Kasper V. Lund),
darkwing@daimi.au.dk (Toke Eskildsen),klaus.m.hansen@daimi.au.dk
(Klaus Marius Hansen),madst@daimi.au.dk (Mads Torgersen).

ESUG Conference 2004 Research Track (www.esug.org)

1 Introduction

More than 90% of microprocessors produced today are used in embedded devices,
ranging from dishwashers, automobiles, to mobile phones. The embedded industry
each year spends more than 20 billion dollars developing andmaintaining software
in these products [1]. Development of software for embeddeddevices has tradition-
ally been very cumbersome: source code is compiled and linked on a development
host, whereupon the resulting binary image is transferred as a whole onto the actual
device, typically into flashable memory. If the source code is changed, the entire
process must be restarted. Making a change effective can thus easily take several
minutes, severely limiting development productivity. This is problematic in an in-
dustry where software development and testing already comprises more than 50%
of R&D budgets [1].

Another problem facing the embedded industry is the lack of serviceability. Soft-
ware content in embedded devices doubles every two years, making exhaustive
testing virtually impossible [2]. Deployed products will inevitably contain software
errors, leading to expensive recalls. As an example, the telecommunications indus-
try currently spends as much as 8 billion dollars each year fixing faulty handsets
[3]. Debugging and profiling is sometimes supported during development, typically
through instrumentation of code, making a debuggable system larger and slower
than a non-instrumented version. For this reason such support is removed in de-
ployed devices, making later error diagnostics exceedingly difficult.

Similarly, software content in embedded devices often requires updates in the form
of upgrades. In a static software model, this is commonly accomplished by down-
loading and re-flashing the entire binary image. In a more dynamic software devel-
opment model where component code can originate from several locations, such
updates become extremely hard to administrate.

Finally, source code is typically highly platform-specific, and written in unsafe,
low-level programming languages such as C or assembler. As aresult, reusability
is limited and software development requires a large degreeof expertise regarding
the particular target platform and its low-level details.

The JavaTM 2 Micro Edition (J2ME) has been proposed as a solution to someof
these issues [4]. It comes with a debugging interface, but this is again commonly
removed due to space concerns. Furthermore, the dynamic code loading model in
J2ME is severely limited compared to its Java 2 Standard Edition (J2SE) counter-
part. Finally, the runtime environment for J2ME requires more memory than what
is available on most low-end embedded systems.

Future pervasive computing scenarios in which a large number of embedded de-
vices are communicating will require a much more flexible software model, al-
lowing for dynamic and changing functionality over time [5]. In the face of this,

2

theResilient Systemhas been designed and implemented. The design goal for the
Resilient System is to have an always running serviceable platform for embedded
devices with the following characteristics:

Incrementality and serviceability: The platform should support incremental pro-
gramming enabling rapid development and full product serviceability.

Accessibility and reuse: Furthermore, it should be accessible to non-expert pro-
grammers, by being based on a safe, high-level programming language with easy
support for reuse of platform-independent code.

Low resource consumption: Finally, the platform should be compact enough to
be useful on low-end embedded devices, including system-on-chip (SOC) solu-
tions, yet efficient enough for most real-time applications.

In this paper we present the design of the Resilient platformas driven by these
goals. Furthermore we evaluate the extent to which this was successful, based on
experiences from two development projects using the Resilient platform, both con-
ducted in a cooperation between academia and industry.

1.1 Contributions

The expected contributions of this paper are:

• to introduce the innovative design and implementation of the Resilient System
which provides incremental development, dynamic upgrading, and serviceability
in embedded systems development and

• an evaluation of the Resilient System in terms of its design goals and of the
relevance of the design goals to the development of two embedded systems.

1.2 Paper Structure

The rest of this paper is structured as follows: Section 2 presents the design and
implementation of the Resilient System in terms of its associated programming lan-
guage (Section 2.2), embedded platform (Section 2.4), and programming environ-
ment (Section 2.5). Next, Section 3 presents our evaluationof the Resilient System
through the conduction of two projects; the “Digital Speakers” project (Section 3.1)
and the “LIWAS” project (Section 3.2). Section 3.3 discusses the experiences of us-
ing the Resilient Systems and finally Section 4 concludes.

3

2 Design and Implementation of the Resilient System

2.1 Overview

The complete Resilient System comprises a development environment running on
a PC and a running Resilient Virtual Machine deployed on an embedded system or
run locally. Figure 1 shows a deployment view of the Resilient System using a Uni-
fied Modeling Language (UML; [6]) deployment diagram. The Resilient Program

:PC

*

:Embedded System

:Eclipse

TCP/IP

:Resilient Virtual Machine

:Resilient Program

:Resilient Plugin

:Resilient Programming Environment

:Resilient Virtual Machine

Fig. 1. Deployment Overview of the Resilient System

Environment, accessed using Eclipse with Resilient plugins, communicates with
the running Resilient Virtual Machine using any available network connection.

The virtual machine connects to the underlying operating system (if available) in
order to establish network connections. If the virtual machine is running without
an underlying operating system, a TCP/IP networking stack running on the virtual
machine is used.

In order to create snapshots for booting and deployment, theprogramming envi-
ronment uses a local virtual machine. Due to the platform independence of the
Resilient code, the local virtual machine is independent ofthe target platform for
the snapshots.

Having created an initial snapshot, the developer transfers it to the target hardware
and starts the virtual machine. Incremental development isperformed by connect-
ing to the virtual machine from Eclipse, which controls debugging as well as up-
dating of classes and evaluation of code on the target virtual machine.

Changes to the running system are not persistent, so the creation and transfer of

4

a new snapshot is necessary if the changes are to survive rebooting of the virtual
machine.

The following sections describe the design of the ResilientSystem in detail.

2.2 The Resilient Programming Language

The Resilient programming language is a dialect of Smalltalk [7] designed for sim-
plicity, compactness, and performance. Smalltalk was chosen for several reasons:
Smalltalk is a simple, dynamically typed, object-orientedprogramming language;
everything is an object and behavior is described as messagesends between ob-
jects; Smalltalk has proven ideal for supporting incremental program modification
in that a programmer can freely modify a program without the need for recom-
piling and restarting the application; and most Smalltalk systems use a snapshot
model allowing the same program execution to survive for years.

The Resilient programming language differs from Smalltalkin the following ways:

• Full syntax for classes is provided.
• Last-In-First-Out (LIFO) blocks are enforced.
• An atomic test-and-store statement for synchronization isintroduced.
• A namespace hierarchy for modularization of libraries is introduced.

Traditionally, Smalltalk systems have forced programmersto use the integrated
programming environment for all program manipulations. Methods are the unit
of manipulation and for that reason a full syntax for classesdoes not exist. We
introduce a full syntax for classes to allow programmers to use standard tools for
program manipulation and source control management. The class syntax has been
inspired by the syntax for Self [8]. The example below shows the source code for
Mutex , a class that implements a simplified lock structure.

Mutex = Object (
| owner |
"acquire the lock prior to evaluating the

block and then release the lock"
do: [action] = (

["repeat the atomic test and store until it succeeds"
owner ? nil := Scheduler current

] whileFalse: [Scheduler yield].
action value.
owner := nil

)
)

5

Most object-oriented systems provide high-level synchronization mechanisms as
part of the programming language [9] or as prebuilt data structures [10]. Instead, we
have introduced a very low-level and simple synchronization mechanism; an atomic
test-and-store statement. Advantages of this approach areminimal virtual machine
support and a very flexible building block for implementing awide range of high-
level synchronization mechanisms. The aboveMutex example uses the atomic test
and store statement to busy wait for exclusive access. In theexample, the current
thread is computed, and then we atomically compare and do a conditional store
(owner ? nil := Scheduler current). The instance variable owner is
compared to nil, and if they match the current thread is assigned to it. The boolean
result of the statement indicates whether the atomic test-and-store succeeded.

In order to support independently developed program parts,a solution for prevent-
ing name collision has been introduced. Resilient providesa simple form of names-
paces. Any class can act as a namespace. For instance, the class describing elements
in a list resides inside the List class. Classes in two different namespaces will there-
fore not be subject to name collisions.

2.3 Typed LIFO Blocks

Creating blocks in Smalltalk has always been a potential source of performance
problems. Blocks might survive the lifespan of the creatingactivation forcing the
underlying implementation to heap allocate not only the blocks themselves but of-
ten also the method invocations in their scope. This is expensive and also stresses
the memory management system. In Resilient, we have restricted blocks to be last-
in-first-out (LIFO), which means a block cannot survive the creating activation.
This allows Resilient to stack allocate blocks, thereby eliminating most costs asso-
ciated with block creation.

To guarantee this behavior, we have introduced a type declaration for blocks: square
brackets around a formal parameter specifies that it is a block. An example is the
parameteraction in the aboveMutex class. This separation between objects
and blocks makes it straightforward for the byte-code compiler to statically enforce
LIFO behavior, by preventing blocks from being stored in objects or used as return
values.

The graph in figure 2 on the following page shows the executiontime of a sim-
ple, recursive, block-intensive micro-benchmark on a number of Smalltalk virtual
machines. The benchmark constructs a linked list and uses blocks and recursion to
compute its length:

Element = Object (
| next |

6

length = (
| n |
n := 0.
self do: [:e | n := n + 1. e ifLast: [ˆn].].

)

do: [block] = (
block value: self.
next do: block.

)

ifLast: [block] = (
next isNil ifTrue: [block value].

)
)

It follows from the implementation that the micro-benchmark allocates at least one
block-context per level of recursion, and that the non-local return in the[ˆn]
block must unwind at least as many contexts as the length of the linked list.

The graph shows that the execution time is linearly dependent on the recursion
depth for all virtual machines. It also shows that enforced LIFO blocks makes
our virtual machine almost 78% faster than the virtual machines for Squeak and
Smalltalk/X, when it comes to interpreting block-intensive code. Better yet, our in-
terpreter outperforms the just-in-time compiled version of the Smalltalk/X system
by more than 16%.

0

100

200

300

400

500

600

700

800

900

1000

1 50Recursion depth

M
ill

is
ec

on
ds

OOVM
Squeak
Smalltalk/X (interpreted)
Smalltalk/X (compiled)

Fig. 2. Execution time for block-intensive micro-benchmark

7

Of course this approach has some language implications. On the negative side,
the purity of the standard Smalltalk “everything is an object” credo is somewhat
hampered with two static types rather than one. In practice the generality of stan-
dard Smalltalk blocks is rarely used, but there are a few (we know of two) com-
mon situations where it would be natural to store blocks inside objects in order
to dynamically parameterize these objects with behaviour.One example is sorted
collections, which should be parameterizable with the comparison operator to use
for the sorting. The other example is Graphical User Interface (GUI) widgets like
buttons, which should be able to store a callback function for when the button is
pressed. In neither case can Resilient LIFO blocks be used, and one must instead
apply the “function object” technique from, e.g., Java Comparators, where a full
object is supplied, implementing the desired behaviour (comparison or callback) as
a method.

From a language point of view it should be noted that general blocks themselves are
not without problems, especially in light of the non-local return mechanism. Non-
local return makes the block return to its creating context rather than its calling
context, but that is meaningful only when the creating context is still on the stack,
and otherwise gives rise to a runtime error (after possibly having peeled apart the
whole stack in search of the missing activation). This undesirable situation is nat-
urally prevented in Resilient, so the added static typing ofblocks does in fact have
an error-preventing as well as an efficiency-related effect.

LIFO behaviour also means that blocks can never be transferred between concur-
rent threads, avoiding the similar issue of what to do in the case of non-local returns
to a different stack. All in all we think that this language restriction has important
semantic advantages along with the efficiency gain, and thatthe loss of expressive-
ness is a minor problem in practice.

2.4 The Embedded Platform

The embedded platform is based on a small object-oriented virtual machine. All
software components are compiled to safe, compact bytecodes and executed on top
of the virtual machine. The compactness makes it possible tofit the virtual machine,
core libraries, device drivers, TCP/IP networking stack, and user applications in less
than 128KB of memory.

The embedded platform can be configured to run directly on hardware without
the need for an operating system. This accommodates for the most resource con-
strained devices, onto which it is impossible or impractical to fit a full operating
system. However, it is also possible to run the embedded platform on top of existing

8

embedded operating systems, such as Embedded Linux1 or Symbian OS2 . This
option is useful in projects that depend on existing applications or device drivers.

Software components running on top of the virtual machine are mostly platform
independent. The virtual machine bytecodes themselves areindependent of the
hardware on which they run, so that it is possible to build applications that run
on any device equipped with the embedded platform. However,the virtual machine
allows device drivers to be implemented on top of it, and therefore some software
components may depend on external input/output devices available only on some
hardware platforms. The example below briefly illustrates how a sample device
driver for the Intel StrongARM general-purpose I/O (GPIO) module might be im-
plemented:

GPIO = Object (
| io |

initialize = (
io := Memory at: 16r90040000 size: 16r20.

)

setOutput: pins = (
io longAt: 16r08 put: pins.

)

clearOutput: pins = (
io longAt: 16r0C put: pins.

)
)

The example also illustrates the most common way of providing device access,
viz., by mapping device address spaces as part of system memory space. Access
to memory-mapped I/O is provided through external memory proxy objects (here
throughMemory objects). The virtual machine makes sure that are driver cannot
allocate a proxy that refers to the object heap, thereby possibly corrupting the heap.
Interrupt requests from devices are reified assignal objectsby the Resilient system
software; device drivers consequently handles interrupt requests at the level of these
objects.

Software components running on top of the virtual machine are fully serviceable
through a reflective interface in the embedded platform. Thereflective interface al-
lows the programming environment running on the developer’s personal computer
to inspect the state of the running system and possibly change it. Section 2.5 gives

1 http://www.embedded-linux.org
2 http://www.symbian.com

9

more details on the connection between the programming environment and the em-
bedded platform.

Most of the reflective interface is implemented in the Resilient Programming Lan-
guage itself as a component running on top of the virtual machine. The virtual ma-
chine provides hooks for manipulating breakpoints and threads and for inspecting
and changing classes, methods, and objects. The communication protocol for re-
flection is handled by a service implemented entirely in the Resilient Programming
Language. The reflective interface is always available, even on devices deployed at
customer sites. The result is that developers can debug, profile, and update running
code on any device that runs the embedded platform.

The embedded platform guarantees predictable response times. It supports schedul-
ing of interrupt handlers and time critical tasks. The non-disruptive, real-time gar-
bage collector handles all resource management in the background. Furthermore,
the virtual machine prevents user code from performing malicious operations, and
as such it provides a secure, device-independent platform for real-time software
execution and delivery.

2.5 The Programming Environment

The Resilient programming environment is written as a plug-in to the Eclipse exten-
sible IDE3 . The Eclipse framework provides well-known methods and abstractions
for managing projects and browsing and editing source code.The Resilient plugin
provides the Resilient-specific components, such as sourcecode compiler, debug-
ging, and the reflective connection to a running embedded platform. Because the
IDE is based on the industry-standard Eclipse framework, developers are able to
transfer existing knowledge and practices of software development into the realm
of embedded development.

An important part of the Resilient development model is the ability to connect the
IDE to a running embedded platform. When connected, the IDE is able to inspect
and make changes to the object model on the running platform.The connection is
made using the network stacks present on the embedded platform, such as stan-
dard TCP/IP. The reflective interface on the embedded platform allows the IDE
to inspect, pause and terminate running threads, inspect and modify objects in the
object heap, and update code on the running platform.

The reflective interface is key to the Resilient way of developing software. Since
developers can evaluate chunks of code on the target device,and upload changes
while the system is running, it is possible to immediately see the effects of changes

3 http://www.eclipse.org

10

in source code. Debugging is also easier, since it is closelycoupled with the source
code development.

Fig. 3. Resilient IDE with a sample project open

Classes in Resilient are organized in namespaces, which maybe nested, providing a
means for grouping of related classes. The Resilient IDE, shown in Figure 3, offers
advanced features for navigating and searching the source code.

3 Evaluation

This section relates the experience of two research projects – both including aca-
demic as well as industrial participation – in which the Resilient platform was used.
One project was aimed specifically at evaluating the platform, whereas the other
uses Resilient as a vehicle for industrial prototype development. We first introduce
the projects and then discuss experiences of using the Resilient System.

11

3.1 The “Digital Speakers” Project

The purpose of this project was to evaluate the Resilient platform in an industrial
setting, targeting as a test case the next generation digital speakers of Bang and
Olufsen (B&O)4 , which are to be connected using the IEEE1392 Firewire stan-
dard.

The virtual machine was ported to a development board with a number of Firewire-
related hardware components. A prototype “speaker” was setup by connecting the
board to a Firewire source (in this case a laptop) and a digital audio destination (in
this case a stereo). In a production speaker, the Firewire source would be a B&O
stereo and the digital audio destination would be a digital amplifier and a number
of speaker units, boxed up with the board as an active speaker.

A programmer with no previous experience in embedded software was employed
to develop a full test application ranging from low-level platform-specific Firewire
driver code to a high-level platform-independent webserver component.

3.2 The LIWAS Project

The LIWAS project is a three year research and development project aiming at
producing a framework,Ex Hoc, for hybrid communication in sensor networks
[11]. The initial use scenario is a network of communicatingsensors for measuring
road condition, i.e., whether the road is dry, icy, snowy, orrainy. This scenario has
applications in traffic safety as well as for resource consumption in connection to
road maintenance.

The sensors will be deployed in cars and on stationary road signs along roads. This
will allow for ad hoc networking among cars [12] in combination with centralized
communication through either Internet-connected road signs or mobile gateways in
the form of mobile phones in cars. The communication will, e.g., allow cars to be
warned by passing cars if the road conditions are problematic further ahead.

The current status is that the first communicating mobile sensor system with a very
simple dissemination protocol is built and tested. Figure 4shows a deployment
view of Ex Hoc. The major part of the software on theMobile Unit, viz. theCom-
munication Systemis written using the Resilient System. It currently runs on a
CerfCube5 board with an XScale processor.

TheSensor Systemis mainly low-level microcontroller code written in C. TheSen-

4 http://www.bang-olufsen.com
5 http://www.intrinsyc.com

12

:Mobile Unit

*

:OOVM Resilient

:Stationary Unit
 *
:DOM

:SensorController

:IntraCar-

Communicator

InterCar-

Communicator

:Communication System

:Sensor System

RS232

*

IEEE802.11

IEEE802.11

:Backend

TCP/IP

Fig. 4. Deployment View of Ex Hoc

sor Systeminterfaces to the various sensors needed for reliably classifying road
conditions. TheSensor Systemdelivers measurements 36 times per second (which
is equivalent to each meter at 130 kph), each of which needs tobe classified by
theDomain Object Model (DOM). The ad hoc communication puts real-time con-
straints on the system as well since among others classifications need to be commu-
nicated among cars passing each other at high speed. TheStationary Unitcontains
software analogous to that of theMobile Unit.

The implementation of the communication system of the sensors is done using the
Resilient System by two programmers with little experiencein embedded software.
The development is done in collaboration with the private company LIWAS A/S6

which is also responsible for the necessary hardware construction.

3.3 Experiences

This section presents and discusses experiences from the “Digital Speakers” and
LIWAS projects in relation to their use of the Resilient System as a basis for imple-
mentation.

6 http://www.liwas.com

13

3.3.1 Batch and Incremental Development

The “speaker” application was the first major application tobe developed on the
Resilient platform, and the project took place while the platform was still being
developed and thus suffering from a number of bugs and flaws. One of these turned
out to be a major show stopper: a problem with the serial line meant that for some
time the platform could not survive receiving incremental program modifications.
Thus we were temporarily forced into the batch-oriented style more conventionally
used for device programming, and inadvertently ended up being able to compare it
with the incremental development model of the Resilient system.

The incremental mode of work proved a huge benefit to productivity. The ability
to query and modify the state of the running device (by sending code to it – at
the time the debugger was not yet functional), and to modify the running code for
programming or test purposes gave rise to a very tight development loop. Compared
to desktop development environments the immediacy and integration of the code-
test-run cycle on the Resilient platform was found to be morein line with dynamic
systems such as conventional Smalltalk than the sopmewhat slower turnaround of
static systems such as Java and C++. The experiences in the LIWAS project concur
with this.

3.3.2 Dynamic Update in Development

An example of the power of serviceability comes from the LIWAS project: part of
the prototyping work has been to equip a trailer with among others light reflection,
road temperature, dewpoint, and air temperature sensors. This was done to collect
as much data as possible on as varied road conditions as possible in order to be able
to create a suitable classification algorithm. While using the trailer with measure-
ment collection and classification controlled by software written in the Resilient
System, it was possible to connect to the running Resilient System with a PC run-
ning the Resilient programming environment. This was very useful among others
in deploying the system, since it was possible to monitor thesystem, see what was
wrong if anything, and possibly fix the problem online.

One problem encountered during development of the LIWAS application was the
inability to update the running code for a thread handling serial communication. By
refactoring the code to a tight loop containing a method invocation, we sidestepped
this limitation. This experience lead to the standard practice of factoring all looping
threads.

A probable future use of the incrementality and serviceability in the LIWAS project
will be the dynamic update of the classification part of deployed systems. Currently,
we are testing two different strategies of classification: one based on a physical
model and one based on a statistical classification. It may possibly turn out that
the best strategy for classification will change after the LIWAS system has been

14

deployed in a number of test installations and that the type of change is one that
requires major code changes which cannot be parametrized inany single algorithm.
The Resilient System contains the main functionality for this, but probably defining
a component model (which enables developers to make deployable, versionable
collections of classes and objects) will be necessary on topof this.

3.3.3 The Resilient Programming Language

Within the resources of the projects we did not have the opportunity to directly
compare programming in Smalltalk with solving an equivalent task in a traditional
embedded programming language like C or C++. We have howeverwritten both
low level (e.g. the FireWire driver in the Digital Speakers project) and high level
(e.g. the webserver in the Digital Speakers project) code.

At the low level, Smalltalk lacks the ability of C-like languages to directly map
declared datastructures onto the very specific bit layout ofdata in memory which
is often characteristic of low level programming. The abstraction mechanisms of
Smalltalk are strong enough, however, that it is straightforward to represent the
individual data components symbolically by means of accessor methods.

In the “speakers” application, the construction and decoding of FireWire packages
was as simple and elegant as any C version, the bit manipulation localized to a few
package-specific methods. For parts of the FireWire code, wedid indeed have C
source available for comparison. In conclusion, writing driver software and related
low level programming presents no special challenges in theResilient Program-
ming Language.

At the high level, the use of object-oriented abstractions is a well documented ad-
vantage, which was also heavily leveraged in the project. A similar effect could
probably have been achieved with the more traditional C++. However, apart from
being far from platform independent, C++ as a compiled language inherently lacks
the possibility of incremental update.

The combination of platform independence and object-oriented abstraction meant
that the whole web server component, first developed on top ofLinux, could be
migrated to the evaluation board with only one minor source code adjustment be-
fore the code was running again. Thus, the on-the-board development philosophy
is balanced by the possibilty of writing extensive parts of an application off-board
if necessary. Moreover, this suggests the possibility for reuse of large amounts of
application code across different platforms, something which is rarely seen in the
embedded world.

In the LIWAS project, a “proof-of-concept” prototype was first developed on a Re-
silient System running without operating system. Using Smalltalk, it was possible
to implement a special-purpose serial driver which hooked into the running Ex Hoc

15

system with miminal overhead. The system was later ported toEmbedded Linux for
further prototyping since a large number of drivers had to beused including Blue-
tooth, USB, and IEEE802.11 drivers. Except for the driver part, there was little code
that had to be removed or replaced. Currently, we are primarily developing directly
on the CerfCube, but also developing on a version of the Resilient System running
on Microsoft Windows XP without any code changes being necessary between the
setups. The end goal is that the system (i.e., drivers) will be fully implemented on
a version of the Resilient System running without an operating system.

3.3.4 Interpretation and Performance

With a purely interpreted architecture, certain performance characteristics are to be
expected. Bytecode representations of code are generally compact, whereas com-
piled code is several times more memory consuming. This is the reason for having
Just-In-Time (JIT) compilers in many systems in order to compile only the most
used code. That code will be doubly represented however, andmore importantly in
a small system, the JIT compiler itself takes up considerable space. But compiled
code undoubtedly does run a lot faster.

The running “speakers” application, including the VM itself, webserver, firewire
driver, TCP stack, etc., fitted comfortably within the 128K RAM available on the
development board. There were no real-time constraints in the functionality, and
therefore little opportunity to evaluate efficiency. Engineers at B&O estimated that
the Resilient VM might have a hard time keeping up with e.g. real-time filtering
of audio streams, at least on affordable hardware. For this purpose, interfacing to
compiled or assembler code would be crucial for the performance-intensive parts
of the code.

The LIWAS application on the other hand is inherently a real-time application in
which the system has to handle a set of measurements 36 times per second and
make a classification based on this for each set of measurements. Our current im-
plementation clearly supports this also with the statistical classification. And even
though the CerfCube board has a large amount of RAM available, only little is
used, and the application would be able to be ported to a device with 256K RAM.

4 Conclusion

4.1 Incrementality and serviceability

Incremental development with a smooth and tight integration of coding and run-
ning has always been a hallmark of Smalltalk and related dynamic programming

16

languages. A major contribution of the Resilient development model is to make this
manageable on an embedded system, by separating out the reflective parts of the
running program onto a separate IDE on a different platform.

Experience from both development projects shows that the Smalltalk programming
feel does indeed carry over to the embedded world, where it isan even greater
relative advantage, because the traditional batch-style alternative here is so much
more costly than in a desktop environment.

Where the update of running code in a desktop Smalltalk environment is a possi-
bility, in Resilient it is almost inevitable. This brings tofocus some of the standard
problems in this area, most notably the fact that code has to be structured in antici-
pation of later changes.

4.2 Accessibility and reuse

Traditional embedded programming tends to require a great deal of platform spe-
cific expertise. Not only do programs have to be written in platform-dependent
dialects of assembler, C or C++, but the tools used for testing and debugging are
highly platform-specific and often even require special hardware. With the Resilient
system, the execution semantics as well as the development tools are independent of
the execution platform, as long as a virtual machine has beenported to it. Of course,
drivers etc. must be implemented specially for each device,but the object-oriented
abstraction mechanisms of Smalltalk help encapsulating and isolating these parts.
Thus, code reuse across platforms becomes a real possibility.

The projects have confirmed this situation. Programmers with no embedded experi-
ence or device-specific knowledge have found it easy to develop applications on the
system, and cross-platform reuse has also been employed successfully. Compared
to standard Smalltalk, the LIFO restrictions on blocks haveproven a nuisance at
some points, but generally the language restrictions of theResilient Programming
Language have not been too inhibitive.

4.3 Compactness and efficiency

Being something as unusual as a fully interpreted bytecode-based embedded plat-
form, the Resilient system emphasises size constraints over speed considerations.
The bytecode format, memory layout, and virtual machine itself are all optimized
for compactness. That said, of course a lot of devotion has gone into running code
as fast as possible. The block limitations are an example of that.

From especially the “speakers” project we can conclude thata good deal of software

17

fits onto a rather small device, although very low-end devices will be out of reach
for the Resilient model. As for speed, we have no measurements, but can only
conclude that in both projects it was fast enough for our purposes.

Acknowledgements

The academic part of this work has been supported by the software part of the
ISIS Katrinebjerg competency centre7 . We thank the industrial participants in the
projects which evaluated the Resilient System.

References

[1] Wind River Systems, Inc., Investor Relations Presentation (September 2003).

[2] Wind River Systems, Inc., Changing Software Development in the Electronics
Industry, Prudential Securities Technology Conference (October 2002).

[3] K. Belson, Beware of the Worm in Your Handset, The New YorkTimes Technology
Section (November 28, 2003).

[4] R. Riggs, A. Taivalsaari, M. VandenBrink, Programming Wireless Devices with
the JavaTM 2 Platform Micro Edition, The Java Series, Addison-Wesley,Reading,
Massachusetts, USA, 2001.

[5] ISTAG, Scenarios for Ambient Intelligence in 2010, Tech. rep., European Commision
- Community Research, ISTAG: European Commission’s Information Society
Technologies Advisory Group (February 2003).

[6] OMG, Unified Modeling Language specification 1.5, Tech. Rep. formal/2003-03-01,
Object Management Group (2003).

[7] A. Goldberg, D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, Massachusetts, USA, 1984.

[8] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Proc. of the OOPSLA-87:
Conference on Object-Oriented Programming Systems, Languages and Applications,
Orlando, FL, 1987, pp. 227–242.

[9] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison Wesley, 1997.

[10] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, K. Nygaard, Abstraction
mechanisms in the beta programming language, in: Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM
Press, 1983, pp. 285–298.

7 http://www.isis.alexandra.dk

18

[11] K. Hansen, T. Eskildsen, L. Kristensen, K.-D. Nielsen,R. Thorup, J. Fridthjof,
U. Merrild, J. Eskildsen, The Ex Hoc Infrastructure - Enhancing Traffic Safety
through LIfe WArning Systems, in: In Proceedings of Trafikdage 2004 (11th Danish
Conference on Traffic Research), Aalborg, Denmark, 2004.

[12] E. Royer, C.-K. Toh, A review of current routing protocols for ad hoc mobile wireless
networks, IEEE Personal Communication 6 (2) (1999) 46–55.

19

